Порядок округления цифр нормативно регулируется. Правило округления чисел Требования округления натурального показателя

Числа округляют и до других разрядов - десятых, сотых, десятков, сотен и т. д.


Если число округляют до какого-нибудь разряда, то все следующие за этим разрядом цифры заменяют нулями, а если они стоят после запятой, то их отбрасывают.


Правило №1. Если первая из отбрасываемых цифр больше или равняется 5, то последняя из сохраняемых цифр усиливается, т. е. увеличивается на единицу.


Пример 1. Дано число 45,769, которое нужно округлить до десятых. Первая отбрасываемая цифра - 6 ˃ 5. Следовательно, последняя из сохраняемых цифр (7) усиливается, т. е. увеличивается на единицу. И, таким образом, округленное число будет - 45,8.


Пример 2. Дано число 5,165, которое нужно округлить до сотых. Первая отбрасываемая цифра – 5 = 5. Следовательно, последняя из сохраняемых цифр (6) усиливается, т. е. увеличивается на единицу. И, таким образом, округленное число будет - 5,17.


Правило №2. Если первая из отбрасываемых цифр меньше, чем 5, то усиление не делается.


Пример: Дано число 45,749, которое нужно округлить до десятых. Первая отбрасываемая цифра - 4

Правило №3. Если отбрасываемая цифра 5, а за ней нет значащих цифр, то округление производится на ближайшее четное число. Т. е. последняя цифра остается неизменной, если она четная и усиливается, если - нечетная.


Пример 1: Округляя число 0,0465 до третьего десятичного знака, пишем - 0,046. Усиления не делаем, т. к. последняя сохраняемая цифра (6) - четная.


Пример 2. Округляя число 0,0415 до третьего десятичного знака, пишем - 0,042. Усиления делаем, т. к. последняя сохраняемая цифра (1) - нечетная.

Значащие цифры

Определение 1 .6 . Значащими цифрами в записи при­ближенного числа называются все цифры в его записи, начиная с первой ненулевой слева.

Определение 1 .7 . Первые п верными в узком смысле , если абсолютная погрешность числа не превосхо­дит половины единицы разряда, соответствующего п- йзначащей цифре, считая слева направо.

Наряду с данным определением иногда используется другое.

Определение 1 .8 . Первые п значащих цифр в записи приближенного числа называются верными в широком смысле , если абсолютная погрешность числа не превосхо­дит единицы разряда, соответствующего n- йзначащей цифре.

Чтобы округлить число до п значащих цифр, отбрасы­вают все цифры, стоящие справа от n -й значащей цифры, или, если это нужно для сохранения разрядов, заменяют их нулями. При этом:

1) если первая отброшенная цифра меньше 5, то остав­шиеся десятичные знаки сохраняют без изменения;

2) если первая отброшенная цифра больше 5, то к пос­ледней оставшейся цифре прибавляют единицу;

3) если первая отброшенная цифра равна 5 и среди ос­тальных отброшенных цифр есть ненулевые, то к после­дней оставшейся цифре прибавляют единицу;

4) если первая из отброшенных цифр равна 5 и все от­брошенные цифры являются нулями, то последняя остав­шаяся цифра оставляется неизменной, если она четная, и увеличивается на единицу, если нет (правило четной цифры).

Это правило гарантирует, что сохраненные значащие цифры числа являются верными в узком смысле, т. е. погрешность округления не превосходит половины разряда, соответствующего последней оставленной значащей цифре. Правило четной цифры должно обеспечить ком­пенсацию знаков ошибок.

Следующая теорема выявляет связь относительной по­грешности числа с числом верных десятичных знаков.

Теорема 1 .1 . Если положительное приближенное чис­ло имеет п верных значащих цифр, то его относительная погрешность δ не превосходит величины 10 1 - n , деленной на первую значащую цифру а н :

δ ≤ 10 1 - n / а н . (1.11)

Формула (11) позволяет вычислить предельную от­носительную погрешность

δ a = 10 1 - n / а н . (1.12)

1 .6 . Погрешности арифметических операций

Приведем правила вычисления погрешности результа­та различных арифметических операций над приближен­ными числами.

Относительно алгебраической суммы u = х ± у можно утверждать следующее.

Теорема 1 .2 . Предельная абсолютная погрешность суммы приближенных чисел равна сумме предельных абсолютных погрешностей слагаемых, т. е.

Δ u = Δ x + Δ y . (1.13)

Из формулы (1.13) следует, что предельная абсолют­ная погрешность суммы не может быть меньше предель­ной абсолютной погрешности наименее точного из сла­гаемых , т. е. если в состав суммы входят приближенные слагаемые с разными абсолютными погрешностями, то сохранять лишние значащие цифры в более точных не имеет смысла.

Теорема 1 .3 . Если все слагаемые в сумме имеют один и тот же знак, то предельная относительная погрешность суммы не превышает наибольшей из предельных относи­тельных погрешностей слагаемых:

δ u ≤ . (1.14)

При вычислении разности двух приближенных чисел и = х - у её абсолютная погрешность, согласно теоре­ме 2, равна сумме абсолютных погрешностей уменьша­емого и вычитаемого, т. е. Δ u = Δ x + Δ y , а предельная относительная погрешность

δ u = .(1.15)

Из формулы (1.15) следует, что если приближенные значения х и у близки, то предельная относительная по­грешность будет очень большой.

В некоторых случаях удается избежать вычисления разности близких чисел с помощью преобразования выра­жения так, чтобы разность была исключена.

Если представляется сложным заменить вычитание близких приближенных чисел сложением, то следует поступать так: если известно, что при вычитании долж­но пропасть m первых значащих цифр, а в результате требуется сохранить п верных цифр, тогда в уменьшае­мом и вычитаемом следует сохранять m + п верных зна­чащих цифр .

Теорема 1 .4 . Предельная относительная погрешность произведения и = х× у приближенных чисел, отличных от пуля, равна сумме предельных относительных погрешно­стей сомножителей, т. е.

δ u = δ x + δ y . (1.16)

В частности, если и = kx, где k – точное число, имеем Δ u = |k| Δ x , δ и = δ х.

Теорема 1 .5 . Предельная относительная погрешность частного равна сумме предельных относительных по­грешностей делимого и делителя.

Округлять числа в жизни приходится чаще, чем кажется многим. Особенно это актуально для людей тех профессий, которые связаны с финансами. Этой процедуре люди, работающие в данной сфере, обучены хорошо. Но и в повседневной жизни процесс приведения значений к целому виду не редкость. Многие люди благополучно забыли, как округлять числа, сразу же после школьной скамьи. Напомним основные моменты этого действия.

Вконтакте

Круглое число

Перед тем как перейти к правилам округления значений, стоит разобраться, что представляет собой круглое число . Если речь идет о целых, то оно обязательно заканчивается нулем.

На вопрос, где в повседневной жизни пригодиться такое умение, можно смело ответить – при элементарных походах по магазинам.

С помощью правила приблизительного подсчета можно прикинуть, сколько будут стоить покупки и какую сумму необходимо взять с собой.

Именно с круглыми числами легче выполнять подсчеты, не используя при этом калькулятор.

К примеру, если в супермаркете или на рынке покупают овощи весом 2 кг 750 г, то в простом разговоре с собеседником зачастую не называют точный вес, а говорят, что приобрели 3 кг овощей. При определении расстояния между населенными пунктами также применяют слово «около». Это и значит приведение результата к удобному виду.

Следует отметить, что при некоторых подсчетах в математике и решении задач также не всегда используются точные значения. Особенно это актуально в тех случаях, когда в ответе получают бесконечную периодическую дробь . Приведем несколько примеров, когда используются приближенные значения:

  • некоторые значения постоянных величин представляются в округленном виде (число «пи» и прочее);
  • табличные значения синуса, косинуса, тангенса, котангенса, которые округлены до определенного разряда.

Обратите внимание! Как показывает практика, приближение значений к целому, конечно, дает погрешность, но сосем незначительную. Чем выше разряд, тем точнее будет результат.

Получение приближенных значений

Это математическое действие осуществляется по определенным правилам.

Но для каждого множества чисел они разные. Отмечают, что округлить можно целые числа и десятичные .

А вот с обыкновенными дробями действие не выполняется.

Сначала их необходимо перевести в десятичные дроби , а затем приступить к процедуре в необходимом контексте.

Правила приближения значений заключаются в следующем:

  • для целых – замена разрядов, следующих за округляемым, нулями;
  • для десятичных дробей – отбрасывания всех чисел, которые находятся за округляемым разрядом.

К примеру, округляя 303 434 до тысяч, необходимо заменить сотни, десятки и единицы нулями, то есть 303 000. В десятичных дробях 3,3333 округляя до десяты х, просто отбрасывают все последующие цифры и получают результат 3,3.

Точные правила округления чисел

При округлении десятичных дробей недостаточно просто отбросить цифры после округляемого разряда . Убедиться в этом можно на таком примере. Если в магазине куплено 2 кг 150 г конфет, то говорят, что приобретено около 2 кг сладостей. Если же вес составляет 2 кг 850 г, то производят округление в большую сторону, то есть около 3 кг. То есть видно, что иногда округляемый разряд изменен. Когда и как это проделывают, смогут ответить точные правила:

  1. Если после округляемого разряда следует цифра 0, 1, 2, 3 или 4, то округляемый оставляют неизменным, а все последующие цифры отбрасываются.
  2. Если после округляемого разряда следует цифра 5, 6, 7, 8 или 9, то округляемый увеличивают на единицу, а все последующие цифры также отбрасываются.

К примеру, как правильно дробь 7,41 приблизить к единицам . Определяют цифру, которая следует за разрядом. В данном случае это 4. Следовательно, согласно правилу, число 7 оставляют неизменным, а цифры 4 и 1 отбрасывают. То есть получаем 7.

Если округляется дробь 7,62, то после единиц следует цифра 6. Согласно правилу, 7 необходимо увеличить на 1, а цифры 6 и 2 отбросить. То есть в результате получится 8.

Представленные примеры показывают, как округлить десятичные дроби до единиц.

Приближение до целых

Отмечено, что округлять до единиц можно точно так же, как и до целых. Принцип один и тот же. Остановимся подробнее на округлении десятичных дробей до определенного разряда в целой части дроби. Представим пример приближения 756,247 до десятков. В разряде десятых располагается цифра 5. После округляемого разряда следует цифра 6. Следовательно, по правилам необходимо выполнить следующие шаги :

  • округление в большую сторону десятков на единицу;
  • в разряде единиц цифру 6 заменяют ;
  • цифры в дробной части числа отбрасываются;
  • в результате получают 760.

Обратим внимание на некоторые значения, в которых процесс математического округления до целых по правилам не отображает объективную картину. Если взять дробь 8,499, то, преобразовывая его по правилу, получаем 8.

Но по сути это не совсем так. Если поразрядно округлить до целых, то вначале получим 8,5, а затем отбрасываем 5 после запятой, и осуществляем округление в большую сторону.

Получаем 9, что, в принципе, не сосем точно. То есть в таких значениях погрешность существенна . Поэтому оцениваем задачу и, если ситуация позволяет, то лучше использовать значение 8,5.

Приближение до десятых

Как округлить до десятых, до сотых, до тысячных? Операция осуществляется по таким же правилам, как и до целых. Основная задача – правильно определить округляемый разряд и знак, который следует за ним.

К примеру, дробь 6,7864 при доведении:

  • до десятых становится равной 6,8;
  • до сотых – 6,79;
  • если округлить до тысячных, то получают 6,786.

Обратите внимание! Незнание этих правил очень удачно используют маркетологи. В магазинах, наблюдая ценник с указанием числа 5,99, большинством покупателей воспринимается цена, равная 5. В действительности же цена товара практически 6.

Математика — учимся округлять числа

Правила округления чисел до десятых

Вывод

Приоритетов умения выполнять такие математические операции можно привести ещё достаточно много. Важно научиться правильно оценивать ситуацию, задаться целью, и результат придет незамедлительно.

Данные в условии задачи числа, имеющие разную точность, придётся округлять, приступая к тем или иным математическим действиям. Поэтому следует сформулировать правила, согласно которым округления будут выполнены корректно и с минимальной погрешностью.

Для начала введём определения.

Округлением десятичной дроби называют отбрасывание цифр этой дроби,

Округлением целого числа называют замену нулями цифр этого числа, следующих за некоторым разрядом.

Правила округления

* Если первая отбрасываемая цифра менше не изменяется.

Например, чтобы представить числовое значение относительной атомной массы бериллия (Л г (Ве) = 9,01218) с двумя десятичными знаками, необходимо округлить число 9,01218. Первая отбрасываемая цифра 2, она меньше 5, следовательно, число 9,01218, округлённое до 2 десятичных знаков, равно 9,01: Л г (Ве) ~ 9,01.

* Если первая отбрасываемая цифра больше 5, то последняя сохраняемая цифра увеличивается на единицу.

Например, числовое значение относительной атомной массы скандия H r (Sc) = 44,9559) с тремя десятичными знаками равно 44,956: / r (Sc) ~ = 44,956.

* Если отбрасывается только цифра 5, то последняя сохраняемая цифра не изменяется, если она чётная, и увеличивается на единицу, если она нечётная.

Например, чтобы представить числовое значение относительной атомной массы золота (Л г (Аи) = = 196,9665) с тремя десятичными знаками, необходимо округлить число 196,9665. Первая и единственная отбрасываемая цифра 5, а первая сохраняемая цифра 6 чётная, следовательно, цифру 6 необходимо оставить без изменения. Таким образом, А г (Аи) ~ 196,966.

В то же время при округлении числового значения относительной атомной массы углерода И Г (С) = 12,01115) до четырёх десятичных знаков надо отбросить единственную цифру 5, первая сохраняемая цифра 1 нечётная, следовательно, её необходимо увеличить на единицу: А,(С) ~ ~ 12,0112.

Рассмотрим следующий пример. Необходимо представить числовое значение относительной атомной массы кислорода (4(0) = = 15,9994) с двумя десятичными знаками. Согласно вышеприведённым правилам следует отбросить от числа 15,9994 последние две цифры -- 9 и 4, а последнюю сохраняемую 9 -- увеличить на единицу. Но цифры большей чем 9.в десятичной системе счисления нет. Не вдаваясь в математические рассуждения и обоснования, приведём правило для такого рода случаев.

* Если отбрасывают цифру больше 5, а последняя сохраняемая цифра 9, то её заменяют нулём, а предпоследнюю цифру увеличивают на единицу. Если же несколько подряд сохраняемых цифр равны 9, то их заменяют нулями, а первая сохраняемая цифра, отличная от 9, увеличивается на единиц)". В итоговой записи сохраняются все десятичные знаки. Нельзя отбрасывать десятичные знаки, равные нулю.

В числе 15,9994 отбрасываем третий десятичный знак (9), второй десятичный знак (9) заменяем нулём, но предпоследняя цифра тоже равна 9, её необходимо заменить на нуль. Первая цифра, отличная от 9, равна 5, её мы увеличиваем на единицу. Таким образом, A r (0) ~ 16,00. Неправильно записать А г (0) = 16,0 или Д(О) =16, отбросив значащие нули.

Теперь приступим к математическому решению задачи 1.

Вычислим массу питьевой соды в смеси.

Вычислим молярные массы гидрокарбоната натрия (питьевой соды) и хлороводорода, раствор которого представляет собой соляная кислота, или узнаем их из справочника.

Вычислим по уравнению реакции массу хлороводорода.

Вычислим массу соляной кислоты.

Вычислим объём соляной кислоты.

Числа округляют, когда полная точность не нужна или невозможна.

Запомните!

Округлить число до определенной цифры (знака), значит заменить его близким по значению числом с нулями на конце.

Натуральные числа округляют до десятков, сотен, тысяч и т.д. Названия цифр в разрядах натурального числа можно вспомнить в теме натуральные числа .

В зависимости от того, до какого разряда надо округлить число, мы заменяем нулями цифру в разрядах единиц, десятков и т.д.

Если число округляется до десятков, то нулями заменяем цифру в разряде единицы.

Если число округляется до сотен, то цифра ноль должна стоять и в разряде единиц, и в разряде десятков.

Запомните!

Число, полученное при округлении, называют приближённым значением данного числа.

Записывают результат округления после специального знака «≈ ». Этот знак читается как «приближённо равно».

При округлении натурального числа до какого-либо разряда надо воспользоваться правилами округления .

  1. Подчеркнуть цифру разряда, до которого надо округлить число.
  2. Отделить все цифры, стоящие справа этого разряда вертикальной чертой.
  3. 0, 1, 2, 3 или 4 , то все цифры, которые отделены справа, заменяются нулями. Цифру разряда, до которой округляли, оставляем без изменений.
  4. Если справа от подчёркнутой цифры стоит цифра 5, 6, 7, 8 или 9 , то все цифры, которые отделены справа, заменяются нулями, а к цифре разряда, до которой округляли, прибавляется 1 .

Поясним на примере. Округлим 57 861 до тысяч. Выполним первые два пункта из правил округления.


После подчёркнутой цифры стоит цифра 8 , значит к цифре разряда тысяч (у нас это 7 ) прибавим 1 , а все цифры, отделённые вертикальной чертой заменим нулями.

Теперь округлим 756 485 до сотен.

Округлим 364 до десятков.

36 |4 ≈ 360 — в разряде единиц стоит 4 , поэтому мы оставляем 6 в разряде десятков без изменений.

На числовой оси число 364 заключено между двумя «круглыми» числами 360 и 370 . Эти два числа называют приближёнными значениями числа 364 с точностью до десятков.

Число 360 — приближённое значение с недостатком , а число 370 — приближённое значение с избытком .

В нашем случае, округлив 364 до десятков, мы получили, 360 — приближённое значение с недостатком.

Округлённые результаты часто записывают без нулей, добавляя сокращения «тыс.» (тысяча), «млн.» (миллион) и «млрд.» (миллиард).

  • 8 659 000 = 8 659 тыс.
  • 3 000 000 = 3 млн.

Округление также применяется для прикидочной проверки ответа в вычислениях.

794 · 52 =

До точного вычисления сделаем прикидку ответа, округлив множители до наивысшего разряда.

794 · 52 ≈ 800 · 50 ≈ 40 000

Делаем вывод, что ответ будет близок к 40 000 .

794 · 52 = 41 228

Аналогично можно выполнять прикидку округлением и при делении чисел.

mob_info